Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Food Microbiol ; 121: 104487, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38637064

RESUMO

Streptococcus thermophilus is a bacterium widely used in the production of yogurts and cheeses, where it efficiently ferments lactose, the saccharide naturally present in milk. It is also employed as a starter in dairy- or plant-based fermented foods that contain saccharides other than lactose (e.g., sucrose, glucose). However, little is known about how saccharide use is regulated, in particular when saccharides are mixed. Here, we determine the effect of the 5 sugars that S. thermophilus is able to use, at different concentration and when they are mixed on the promoter activities of the C-metabolism genes. Using a transcriptional fusion approach, we discovered that lactose and glucose modulated the activity of the lacS and scrA promoters in a concentration-dependent manner. When mixed with lactose, glucose also repressed the two promoter activities; when mixed with sucrose, lactose still repressed scrA promoter activity. We determined that catabolite control protein A (CcpA) played a key role in these dynamics. We also showed that promoter activity was linked with glycolytic flux, which varied depending on saccharide type and concentration. Overall, this study identified key mechanisms in carbohydrate metabolism - autoregulation and partial hierarchical control - and demonstrated that they are partly mediated by CcpA.


Assuntos
Glucose , Lactose , Lactose/metabolismo , Glucose/metabolismo , Metabolismo dos Carboidratos , Glicólise , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Sacarose/metabolismo
2.
Molecules ; 29(6)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38542894

RESUMO

The lactic acid bacteria Streptococcus thermophilus and Lactobacillus helveticus are commonly used as starter cultures in dairy product production. This study aimed to investigate the characteristics of fermented milk using different ratios of these strains and analyze the changes in volatile compounds during fermentation and storage. A 10:1 ratio of Streptococcus thermophilus CICC 6063 to Lactobacillus helveticus CICC 6064 showed optimal fermentation time (4.2 h), viable cell count (9.64 log10 colony-forming units/mL), and sensory evaluation score (79.1 points). In total, 56 volatile compounds were identified and quantified by solid-phase microextraction and gas chromatography-mass spectrometry (SPME-GC-MS), including aldehydes, ketones, acids, alcohols, esters, and others. Among these, according to VIP analysis, 2,3-butanedione, acetoin, 2,3-pentanedione, hexanoic acid, acetic acid, acetaldehyde, and butanoic acid were identified as discriminatory volatile metabolites for distinguishing between different time points. Throughout the fermentation and storage process, the levels of 2,3-pentanedione and acetoin exhibited synergistic dynamics. These findings enhance our understanding of the chemical and molecular characteristics of milk fermented with Streptococcus thermophilus and Lactobacillus helveticus, providing a basis for improving the flavor and odor of dairy products during fermentation and storage.


Assuntos
Lactobacillus delbrueckii , Lactobacillus helveticus , Pentanonas , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Fermentação , Acetoína/análise , Lactobacillus delbrueckii/metabolismo , Cetonas/análise
3.
Int J Food Microbiol ; 416: 110684, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38513545

RESUMO

Urease operon is highly conserved within the species Streptococcus thermophilus and urease-negative strains are rare in nature. S. thermophilus MIMO1, isolated from commercial yogurt, was previously characterized as urease-positive Ni-dependent strain. Beside a mutation in ureQ, coding for a nickel ABC transporter permease, the strain MIMO1 showed a mutation in ureE gene which code for a metallochaperone involved in Ni delivery to the urease catalytic site. The single base mutation in ureE determined a substitution of Asp29 with Asn29 in the metallochaperone in a conserved protein region not involved in the catalytic activity. With the aim to investigate the role Asp29vs Asn29 substitution in UreE on the urease activity of S. thermophilus, ureE gene of the reference strain DSM 20617T (ureEDSM20617) was replaced by ureE gene of strain MIMO1 (ureEMIMO1) to obtain the recombinant ES3. In-gel detection of urease activity revealed that the substitution of Asp29 with Asn29 in UreE resulted in a higher stability of the enzyme complexes. Moreover, the recombinant ES3 showed higher level of urease activity compared to the wildtype without any detectable increase in the expression level of ureC gene, thus highlighting the role of UreE not only in Ni assembly but also on the level of urease activity. During the growth in milk, the recombinant ES3 showed an anticipated urease activity compared to the wildtype, and analogous milk fermentation performance. The overall data obtained by comparing urease-positive and urease-negative strains/mutants confirmed that urease activity strongly impacts on the milk fermentation process and specifically on the yield of the homolactic fermentation.


Assuntos
Streptococcus thermophilus , Urease , Animais , Urease/genética , Streptococcus thermophilus/metabolismo , Metalochaperonas/metabolismo , Proteínas de Transporte/genética , Níquel/metabolismo , Hidrólise , Leite/metabolismo , Ureia , Fermentação , Proteínas de Bactérias/genética
4.
Nucleic Acids Res ; 52(7): 3896-3910, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38340341

RESUMO

The type III CRISPR-Cas effector complex Csm functions as a molecular Swiss army knife that provides multilevel defense against foreign nucleic acids. The coordinated action of three catalytic activities of the Csm complex enables simultaneous degradation of the invader's RNA transcripts, destruction of the template DNA and synthesis of signaling molecules (cyclic oligoadenylates cAn) that activate auxiliary proteins to reinforce CRISPR-Cas defense. Here, we employed single-molecule techniques to connect the kinetics of RNA binding, dissociation, and DNA hydrolysis by the Csm complex from Streptococcus thermophilus. Although single-stranded RNA is cleaved rapidly (within seconds), dual-color FCS experiments and single-molecule TIRF microscopy revealed that Csm remains bound to terminal RNA cleavage products with a half-life of over 1 hour while releasing the internal RNA fragments quickly. Using a continuous fluorescent DNA degradation assay, we observed that RNA-regulated single-stranded DNase activity decreases on a similar timescale. These findings suggest that after fast target RNA cleavage the terminal RNA cleavage products stay bound within the Csm complex, keeping the Cas10 subunit activated for DNA destruction. Additionally, we demonstrate that during Cas10 activation, the complex remains capable of RNA turnover, i.e. of ongoing degradation of target RNA.


Assuntos
Streptococcus thermophilus , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Sistemas CRISPR-Cas , RNA/metabolismo , RNA/química , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , DNA/química , DNA/genética , Cinética , Clivagem do RNA , Hidrólise , Imagem Individual de Molécula , Ligação Proteica
5.
J Sci Food Agric ; 104(3): 1458-1469, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37814322

RESUMO

BACKGROUND: Streptococcus thermophilus is an important strain widely used in dairy fermentation, with distinct urea metabolism characteristics compared to other lactic acid bacteria. The conversion of urea by S. thermophilus has been shown to affect the flavor and acidification characteristics of milk. Additionally, urea metabolism has been found to significantly increase the number of cells and reduce cell damage under acidic pH conditions, resulting in higher activity. However, the physiological role of urea metabolism in S. thermophilus has not been fully evaluated. A deep understanding of this metabolic feature is of great significance for its production and application. Genome-scale metabolic network models (GEMs) are effective tools for investigating the metabolic network of organisms using computational biology methods. Constructing an organism-specific GEM can assist us in comprehending its characteristic metabolism at a systemic level. RESULTS: In the present study, we reconstructed a high-quality GEM of S. thermophilus S-3 (iCH492), which contains 492 genes, 608 metabolites and 642 reactions. Growth phenotyping experiments were employed to validate the model both qualitatively and quantitatively, yielding satisfactory predictive accuracy (95.83%), sensitivity (93.33%) and specificity (100%). Subsequently, a systematic evaluation of urea metabolism in S. thermophilus was performed using iCH492. The results showed that urea metabolism reduces intracellular hydrogen ions and creates membrane potential by producing and transporting ammonium ions. This activation of glycolytic fluxes and ATP synthase produces more ATP for biomass synthesis. The regulation of fluxes of reactions involving NAD(P)H by urea metabolism improves redox balance. CONCLUSION: Model iCH492 represents the most comprehensive knowledge-base of S. thermophilus to date, serving as a potent tool. The evaluation of urea metabolism led to novel insights regarding the role of urease. © 2023 Society of Chemical Industry.


Assuntos
Redes e Vias Metabólicas , Streptococcus thermophilus , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fermentação , Leite/química , Ureia/metabolismo , Trifosfato de Adenosina/análise
6.
Arch Microbiol ; 206(1): 21, 2023 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-38095705

RESUMO

Bone is a kind of meat processing by-product with high nutritional value but low in calorie, which is a typical food in China and parts of East Asian countries. Microbial fermentation by lactic acid bacteria showed remarkable advantages to increase the absorption of nutrients from bone cement by human body. Streptococcus thermophilus CICC 20372 is proven to be a good starter for bone cement fermentation. No genes encoding virulence traits or virulence factors were found in the genome of S. thermophilus CICC 20372 by a thorough genomic analysis. Its notable absence of antibiotic resistance further solidifies the safety. Furthermore, the genomic analysis identified four types of gene clusters responsible for the synthesis of antimicrobial metabolites. A comparative metabolomic analysis was performed by cultivating the strain in bone cement at 37 °C for 72 h, with the culture in de Man, Rogosa, and Sharpe (MRS) medium as control. Metabolome analysis results highlighted the upregulation of pathways involved in 2-oxocarboxylic acid metabolism, ATP-binding cassette (ABC) transporters, amino acid synthesis, and nucleotide metabolism during bone cement fermentation. S. thermophilus CICC 20372 produces several metabolites with health-promoting function during bone cement fermentation, including indole-3-lactic acid, which is demonstrated ameliorative effects on intestinal inflammation, tumor growth, and gut dysbiosis. In addition, lots of nucleotide and organic acids were accumulated at higher levels, which enriched the fermented bone cement with a variety of nutrients. Collectively, these features endow S. thermophilus CICC 20372 a great potential strain for bone food processing.


Assuntos
Cimentos Ósseos , Streptococcus thermophilus , Humanos , Fermentação , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Cimentos Ósseos/metabolismo , Metaboloma , Nucleotídeos/metabolismo
7.
Nutrients ; 15(22)2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-38004159

RESUMO

It has been found that Streptococcus thermophilus (S. thermophilus) influenced the gut microbiota and host metabolism with strain specificity in C57BL/6J mice in the previous study, though it remains unclear whether lactose as a dietary factor associated with dairy consumption is involved as the mediator in the interaction. In the present study, integrated analysis of 16S rRNA gene sequencing and untargeted metabolomics by liquid chromatography-mass spectrometry of fecal samples in C57BL/6J mice was applied to evaluate the effect of lactose on the regulation of gut microbiota by two S. thermophilus strains (4M6 and DYNDL13-4). The results showed that the influence of lactose supplementation on gut microbiota induced by S. thermophilus ingestion was strain-specific. Although two S. thermophilus strains ingestion introduced similar perturbations in the fecal microbiota and gut microbial metabolism, the regulation of DYNDL13-4 on the gut microbiota and metabolism was more affected by lactose than 4M6. More specifically, lactose and 4M6 supplementation mainly enriched pathways of d-glutamine and d-glutamate metabolism, alanine, aspartate, and glutamate metabolism, and tryptophan and phenylalanine metabolism in the gut, whereas 4M6 only enriched tryptophan and phenylalanine metabolism. DYNDL13-4-L (DYNDL13-4 with lactose) had significant effects on sulfur, taurine, and hypotaurine metabolism in the gut and on phenylalanine, tyrosine, tryptophan biosynthesis, and linoleic acid metabolism in serum relative to the DYNDL13-4. Our study demonstrated the strain-specific effect of lactose and S. thermophilus supplementation on gut microbiota and host metabolism. However, considering the complexity of the gut microbiota, further research is necessary to provide insights to facilitate the design of personalized fermented milk products as a dietary therapeutic strategy for improving host health.


Assuntos
Microbioma Gastrointestinal , Streptococcus thermophilus , Camundongos , Animais , Streptococcus thermophilus/metabolismo , Lactose/metabolismo , Triptofano/metabolismo , RNA Ribossômico 16S/metabolismo , Camundongos Endogâmicos C57BL , Metaboloma , Fenilalanina/metabolismo , Suplementos Nutricionais
8.
Genomics ; 115(6): 110724, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37820823

RESUMO

Streptococcus thermophilus FUA329, a urolithin A-producing bacterium, is isolated from human breast milk. The complete genome sequence of FUA329 did not contain any plasmids and at least 20 proteins were related to extreme environment resistance. Phenotypic assay results demonstrated that FUA329 was susceptible to 12 kinds of antibiotics and did not exhibit any hemolytic or nitrate reductase activity. Three free radical scavenging assays revealed that FUA329 have high antioxidant capability. FUA329 exhibited a cell surface hydrophobicity of 52.58 ± 1.17% and an auto-aggregation rate of 18.69 ± 2.48%. Moreover, FUA329 demonstrated a survival rate of over 60% in strong acid and bile salt environments, indicating that FUA329 may be stable colonization in the gastrointestinal tract. Additionally, we firstly found 3 potential proteins and 11 potential genes of transforming ellagic acid to urolithins in FUA329 genome. The above results indicate that FUA329 has credible safety and probiotic properties, as well as the potential to be developed as a new generation of urolithin A-producing probiotics.


Assuntos
Leite Humano , Probióticos , Feminino , Humanos , Animais , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Leite/microbiologia , Genômica , Probióticos/metabolismo
9.
Int J Food Microbiol ; 407: 110414, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-37778080

RESUMO

Bacterial community collapse due to phage infection is a major risk in cheese making processes. As virulent phages are ubiquitous and diverse in milk fermentation factories, the use of phage-resistant lactic acid bacteria (LAB) is essential to obtain high-quality fermented dairy products. The LAB species Streptococcus thermophilus contains two type II-A CRISPR-Cas systems (CRISPR1 and CRISPR3) that can effectively protect against phage infection. However, virulent streptococcal phages carrying anti-CRISPR proteins (ACR) that block the activity of CRISPR-Cas systems have emerged in yogurt and cheese environments. For example, phages carrying AcrIIA5 can impede both CRISPR1 and CRISPR3 systems, while AcrIIA6 stops only CRISPR1. Here, we explore the activity and diversity of a third streptococcal phage anti-CRISPR protein, namely AcrIIA3. We were able to demonstrate that AcrIIA3 is efficiently active against the CRISPR3-Cas system of S. thermophilus. We used AlphaFold2 to infer the structure of AcrIIA3 and we predicted that this new family of functional ACR in virulent streptococcal phages has a new α-helical fold, with no previously identified structural homologs. Because ACR proteins are being explored as modulators in genome editing applications, we also tested AcrIIA3 against SpCas9. We found that AcrIIA3 could block SpCas9 in bacteria but not in human cells. Understanding the diversity and functioning of anti-defence mechanisms will be of importance in the design of long-term stable starter cultures.


Assuntos
Bacteriófagos , Fagos de Streptococcus , Humanos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Fagos de Streptococcus/genética , Sistemas CRISPR-Cas/genética , Edição de Genes
10.
Molecules ; 28(13)2023 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-37446903

RESUMO

Yak yogurt, which is rich in microorganisms, is a naturally fermented dairy product prepared with ancient and modern techniques by Chinese herdsmen in the Qinghai-Tibet Plateau. The objective of this research was to assess the impact of Lactobacillus bulgaricus and Streptococcus thermophilus starter cultures on the quality and shelf life of yak yogurt, as well as the genetic stability across multiple generations, in comparison to commercially available plain yogurt and peach oat flavor yogurt. Following that, the samples were evenly divided into four treatment groups denoted as T1 (treatment 1), T2, T3, and T4, with each group employing a distinct source of yogurt formulation. T1 included L. bulgaricus, T2 comprised S. thermophilus, T3 consisted of plain yogurt, and T4 represented peach oat yogurt flavor. The findings indicate that T1 yogurt consistently presents a lower pH and higher acidity compared to the other three yogurt types throughout the entire generation process. Moreover, the fat content in all generations of the four yogurt types exceeds the national standard of 3.1 g/100 g, while the total solid content shows a tendency to stabilize across generations. The protein content varies significantly among each generation, with T1 and T4 yogurt indicating higher levels compared to the T2 and T3 yogurt groups. In terms of overall quality, T1 and T4 yogurt are superior to T2 and T3 yogurt, with T1 yogurt being the highest in quality among all groups. The findings revealed that the inclusion of L. bulgaricus led to enhanced flavor, texture, and genetic stability in yak yogurt. This study will serve as a valuable source of data, support, and methodology for the development and screening of compound starters to be utilized in milk fermentation in future research and applications.


Assuntos
Lactobacillus delbrueckii , Iogurte , Animais , Bovinos , Iogurte/análise , Leite/química , Tibet , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Fermentação
11.
Int J Food Microbiol ; 394: 110188, 2023 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-36989928

RESUMO

In this study, PDO Provola dei Nebrodi cheese was deeply characterized for its bacterial community and chemical composition. Four dairy factories (A-D) were monitored from milk to ripened cheese. Wooden vat biofilms were dominated by thermophilic rod LAB (4.6-6.5 log CFU/cm2). Bulk milk showed consistent levels of total mesophilic microorganisms (TMM) (5.0-6.0 log CFU/mL) and, after curdling, a general increase was recorded. The identification of the dominant LAB in wooden vat biofilms and ripened cheeses showed that the majority of wooden vat LAB were lactococci and Streptococcus thermophilus, while cheese LAB mainly belonged to Lacticaseibacillus paracasei and Enterococcus. Illumina sequencing identified 22 taxonomic groups; streptococci, lactococci, lactobacilli and other LAB constituted the majority of the total relative abundance % of the wooden vat (69.01-97.58 %) and cheese (81.57-99.87 %) bacterial communities. Regarding chemical composition, the effect of dairy factories was significant only for protein content. Inside cheese color was lighter and yellower than surface. Differences in fatty acids regarded only myristic acid and total amount of monounsaturated fatty acids. The sensory evaluation indicated some differences among cheeses produced in the four dairies regarding color, homogeneity of structure, overall intensity, salty, spicy, and hardness. The integrated approach applied in this study showed that PDO Provola dei Nebrodi cheese characteristics are quite stable among the dairy factories analyzed and this has to be unavoidably imputed to the application of the same cheese making protocol among different dairies.


Assuntos
Queijo , Animais , Queijo/microbiologia , Streptococcus , Lactobacillus , Streptococcus thermophilus/metabolismo , Enterococcus , Lactococcus , Leite/microbiologia
12.
Oral Health Prev Dent ; 21(1): 69-76, 2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36825640

RESUMO

PURPOSE: To evaluate the effect of bovine milk and yogurt on selected oral microorganisms and different oral biofilms. MATERIALS AND METHODS: Milk was prepared from 0.5% fat (low-fat) and 16% fat (high fat) milk powder. For yogurt preparation, the strains Lactobacillus delbrueckii ssp. bulgarcius and Streptococcus thermophilus were added to the milk. Minimal inhibitory concentrations (MIC) and minimal microbiocidal concentrations (MMC) of the test compounds were measured against various microorganisms by the microbroth dilution technique. Cariogenic periodontal biofilms and one containing Candida were created on plastic surfaces coated with test substances. Further, preformed biofilms were exposed to the test substances at a concentration of 100% for 10 min and thereafter 10% for 50 min. Both colony forming units (cfu) and metabolic activity were quantified in the biofilms. RESULTS: Neither high-fat milk, low-fat milk nor casein inhibited the growth of any species. Yogurt and L. delbrueckii ssp. bulgaricus at low MIC and MMC suppressed the growth of Porphyromonas gingivalis and other bacteria associated with periodontal disease. High-fat yogurt decreased cfu in the forming periodontal biofilm by 90%. Both low- and high-fat yogurts reduced metabolic activity in newly forming and preformed periodontal and Candida biofilms, but not in the cariogenic biofilm. CONCLUSIONS: Yogurt and L. delbru eckii ssp. bulgaricus, but not milk, were bactericidal against periodontopathogenic bacteria. Yoghurt reduced the metabolic activity of a Candida biofilm and a periodontal biofilm. Yogurt and L. delbrueckii ssp. bulgaricus may have potential in prevention and therapy of periodontal diseases and Candida infections.


Assuntos
Lactobacillus delbrueckii , Iogurte , Humanos , Animais , Iogurte/microbiologia , Leite/microbiologia , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Biofilmes
13.
J Dairy Sci ; 106(4): 2303-2313, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36823014

RESUMO

Streptococcus thermophilus has been extensively applied in fermented milk. This study used gas chromatography-ion mobility spectroscopy to determine and evaluate the volatile metabolites in raw milk, milk fermented at 37°C, and milk fermented at 42°C. Ten discriminatory volatile metabolites were identified at different incubation temperatures: acetone, 2-heptanone, 2-pentanone, 2-hexanone, butanal, hexanal, ethyl acetate, 3-methylbutanal, 3-methylbutanoic acid, and 2-methylpropanoic acid, indicating that fermentation temperature affected the spectrum of volatiles in milk fermented by different strains of S. thermophilus. Specifically, fermentation at 37°C led to accumulation of short-chain fatty acids, whereas fermentation at 42°C enriched ketones and other flavor substances in the fermented milk, enhancing the flavor of the product. This work examined the differences between the volatile metabolites produced by different S. thermophilus strains fermented at different temperatures to evaluate the effect of temperature on the metabolic pathways.


Assuntos
Leite , Streptococcus thermophilus , Animais , Leite/química , Streptococcus thermophilus/metabolismo , Temperatura , Fermentação , Metaboloma
14.
Probiotics Antimicrob Proteins ; 15(3): 716-727, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35029787

RESUMO

Despite functional goat milk products having emerged due to their importance for human nutrition and health, few studies have assessed the safety of consumption of goat dairy products containing potentially probiotic autochthonous lactic acid bacteria supplemented with prebiotic carbohydrates. Aiming this field, this study evaluated the safety of goat's milk fermented with Streptococcus thermophilus QGE, the autochthonous Limosilactobacillus mucosae CNPC007 culture, and the prebiotic inulin, through single- and repeated-dose oral toxicity tests (SDT and RDT, respectively) in animals. Ten female Swiss Webster mice were used for SDT evaluation - 2 groups, SDTc (20 mL/kg of filtered water) and SDTt (20 mL/kg of fermented milk) - and 40 Wistar rats for RDT - RDT3, RDT6, and RDT12 (treated with fermented milk at doses of 3 mL/kg, 6 mL/kg, and 12 mL/kg, respectively) and also RDTc (12 mL/kg of filtered water). For SDT, no signs of mortality or toxicity were observed, and the animals maintained the expected weight gain and feed intake. The RDT trials did not show mortality or signs of toxicity, as well as no change in body weight and organs, in the hematological and biochemical parameters, and also in relation to morphology and histology. Since the fermented milk did not cause any toxic effect in the conditions evaluated, it can be said that its no-adverse effect level (NOAEL) was considered to be higher than 20 mL/kg/day. Thus, the fermented milk with L. mucosae CNPC007 and inulin was considered to be of low toxicity, safe for use in rodents, and allowed for use in further studies.


Assuntos
Produtos Fermentados do Leite , Probióticos , Animais , Humanos , Ratos , Camundongos , Feminino , Leite/microbiologia , Prebióticos , Inulina/metabolismo , Streptococcus thermophilus/metabolismo , Técnicas de Cocultura , Fermentação , Ratos Wistar , Cabras , Água , Produtos Fermentados do Leite/microbiologia
15.
J Adv Res ; 45: 127-140, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35599106

RESUMO

INTRODUCTION: Antifreeze peptides regulate the physiological functions of frozen cells and even their apoptosis; however, the mechanisms by which antifreeze peptides regulate these processes remain unclear, although the interactions between cell membranes and ice are well known to be important in this process. OBJECTIVES: Our study aims to investigate how antifreeze peptides regulate cell physiological functions during the freezing process. METHODS: We investigated the cryoprotective effect of rsfAFP on the physiological functions of S. thermophilus under freezing stress by measuring cellular metabolism activity, intracellular enzyme activity, cell membrane characterization, and cell apoptosis. The mechanism by which rsfAFP impacts S. thermophilus physiological functions under freezing stress was investigated using multispectral techniques and cryo-TEM. RESULTS: We show that a recombinant antifreeze peptide (rsfAFP) interacts with the extracellular capsular polysaccharides and peptidoglycan of Streptococcus thermophilus and ice to cover the outer layer of the membrane, forming a dense protective layer that regulates the molecular structure of extracellular ice crystals, which results in reduced extracellular membrane damage, depressed apoptosis and increased intracellular metabolic activity. This interaction mechanism was indicated by the fact that S. thermophilus better maintained its permeability barrier, membrane fluidity, membrane structural integrity, and cytoplasmic membrane potential during freezing stress with rsfAFP treatment. CONCLUSION: These results provide new insights into the mechanism by which rsfAFP regulates frozen cellphysiological functionsand apoptosis under freezing stress.


Assuntos
Gelo , Streptococcus thermophilus , Congelamento , Streptococcus thermophilus/metabolismo , Crioprotetores/farmacologia , Crioprotetores/química , Crioprotetores/metabolismo , Proteínas Anticongelantes/química , Proteínas Anticongelantes/metabolismo , Proteínas Anticongelantes/farmacologia
16.
J Dairy Sci ; 106(2): 897-911, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36526462

RESUMO

Yogurt and its related products are popular worldwide. During transportation and storage, Lactobacillus delbrueckii ssp. bulgaricus in yogurt continues to metabolize to form lactic acid, the postacidification phenomenon of yogurt. Postacidification of yogurt is a widespread phenomenon in the dairy industry. Many scholars have done research on controlling the postacidification process, but few report on the molecular mechanisms involved. In this study, we used a molecular-assisted approach to screen food additives that can inhibit postacidification and analyzed its effects on yogurt quality as well as its regulatory mechanism from multi-omics perspectives in combination. The copper ion was found to upregulate the expression of the LDB_RS05285 gene, and the copper transporter-related genes were regulated by copper. Based on the metabolic-level analysis, copper was found to promote lactose hydrolysis, accumulate a large amount of glucose and galactose, inhibit the conversion of glucose to lactic acid, and reduce the production of lactic acid. The significantly greater abundance of l-isoleucine and l-phenylalanine increased the abundance of 3-methylbutyraldehyde (∼1.2 times) and benzaldehyde (∼7.9 times) to different degrees, which contributed to the formation of the overall flavor of yogurt. Copper not only stabilizes the acidity of yogurt, but also it improves the flavor of yogurt. Through this established method involving quantitative and correlation analyses at the transcriptional and metabolic levels, this study provides guidance for the research and development of food additives that inhibit postacidification of yogurt and provide a reference for studying the changes of metabolites during storage of yogurt.


Assuntos
Cobre , Lactobacillus delbrueckii , Animais , Fermentação , Cobre/metabolismo , Iogurte/análise , Lactobacillus delbrueckii/metabolismo , Glucose/metabolismo , Óperon , Ácido Láctico/metabolismo , Streptococcus thermophilus/metabolismo
17.
J Dairy Sci ; 106(2): 884-896, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36460506

RESUMO

Streptococcus thermophilus and Lactobacillus delbrueckii ssp. bulgaricus are the main species used for yogurt preparation. Glutathione (GSH) can be synthesized by S. thermophilus and plays a crucial role in combating environmental stress. However, the effect of GSH biosynthesis by S. thermophilus on cocultured L. delbrueckii ssp. bulgaricus is still unknown. In this study, a mutant S. thermophilus ΔgshF was constructed by deleting the GSH synthase. The wild strain S. thermophilus ST-1 and ΔgshF mutants were cocultured with L. delbrueckii ssp. bulgaricus ATCC11842 by using Transwell chambers (Guangzhou Shuopu Biotechnology Co., Ltd.), respectively. It was proven that the GSH synthesized by S. thermophilus ST-1 could be absorbed and used by L. delbrueckii ssp. bulgaricus ATCC11842, and promote growth ability and stress tolerance of L. delbrueckii ssp. bulgaricus ATCC11842. The biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ST-1 or ΔgshF (adding exogenous GSH) increased by 1.8 and 1.4 times compared with the biomass of L. delbrueckii ssp. bulgaricus ATCC11842 cocultured with S. thermophilus ΔgshF. Meanwhile, after H2O2 and low-temperature treatments, the bacterial viability of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ΔgshF, with or without GSH, was decreased by 41 and 15% compared with that of L. delbrueckii ssp. bulgaricus cocultured with S. thermophilus ST-1. Furthermore, transcriptome analysis showed that the expression levels of genes involved in purine nucleotide and pyrimidine nucleotide metabolism in L. delbrueckii ssp. bulgaricus ATCC11842 were at least 3 times increased when cocultured with S. thermophilus (fold change > 3.0). Moreover, compared with the mutant strain ΔgshF, the wild-type strain ST-1 could shorten the fermented curd time by 5.3 hours during yogurt preparation. These results indicated that the GSH synthesized by S. thermophilus during cocultivation effectively enhanced the activity of L. delbrueckii ssp. bulgaricus and significantly improved the quality of fermented milk.


Assuntos
Lactobacillus delbrueckii , Animais , Lactobacillus delbrueckii/metabolismo , Streptococcus thermophilus/metabolismo , Técnicas de Cocultura/veterinária , Peróxido de Hidrogênio/metabolismo , Iogurte/análise , Glutationa/metabolismo , Fermentação
18.
Nutrients ; 14(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36432464

RESUMO

Streptococcus thermophilus, a food grade bacterium, is extensively used in the manufacture of fermented products such as yogurt and cheeses. It has been shown that S. thermophilus strains exhibited varying anti-inflammatory activities in vitro. Our previous study displayed that this activity could be partially due to peptide(s) generated by trypsin hydrolysis of the surface proteins of S. thermophilus LMD-9. Surface protease PrtS could be the source of these peptides during gastrointestinal digestion. Therefore, peptide hydrolysates were obtained by shaving two phenotypically distinct strains of S. thermophilus (LMD-9 PrtS+ and CNRZ-21N PrtS-) with pepsin, a gastric protease, followed or not by trypsinolysis. The peptide hydrolysates of both strains exhibited anti-inflammatory action through the modulation of pro-inflammatory mediators in LPS-stimulated THP-1 macrophages (COX-2, Pro-IL-1ß, IL-1ß, and IL-8) and LPS-stimulated HT-29 cells (IL-8). Therefore, peptides released from either PrtS+ or PrtS- strains in the gastrointestinal tract during digestion of a product containing this bacterium may display anti-inflammatory effects and reduce the risk of inflammation-related chronic diseases.


Assuntos
Interleucina-8 , Streptococcus thermophilus , Streptococcus thermophilus/metabolismo , Interleucina-8/metabolismo , Lipopolissacarídeos/metabolismo , Proteínas de Bactérias/metabolismo , Peptídeos/farmacologia , Peptídeos/metabolismo , Endopeptidases/metabolismo , Peptídeo Hidrolases/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/metabolismo
19.
Appl Environ Microbiol ; 88(16): e0078022, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35924931

RESUMO

Streptococcus thermophilus is a lactic acid bacterium adapted toward growth in milk and is a vital component of starter cultures for milk fermentation. Here, we combine genome-scale metabolic modeling and transcriptome profiling to obtain novel metabolic insights into this bacterium. Notably, a refined genome-scale metabolic model (GEM) accurately representing S. thermophilus CH8 metabolism was developed. Modeling the utilization of casein as a nitrogen source revealed an imbalance in amino acid supply and demand, resulting in growth limitation due to the scarcity of specific amino acids, in particular sulfur amino acids. Growth experiments in milk corroborated this finding. A subtle interdependency of the redox balance and the secretion levels of the key metabolites lactate, formate, acetoin, and acetaldehyde was furthermore identified with the modeling approach, providing a mechanistic understanding of the factors governing the secretion product profile. As a potential effect of high expression of arginine biosynthesis genes, a moderate secretion of ornithine was observed experimentally, augmenting the proposed hypothesis of ornithine/putrescine exchange as part of the protocooperative interaction between S. thermophilus and Lactobacillus delbrueckii subsp. bulgaricus in yogurt. This study provides a foundation for future community modeling of food fermentations and rational development of starter strains with improved functionality. IMPORTANCE Streptococcus thermophilus is one the main organisms involved in the fermentation of milk and, increasingly, also in the fermentation of plant-based foods. The construction of a functional high-quality genome-scale metabolic model, in conjunction with in-depth transcriptome profiling with a focus on metabolism, provides a valuable resource for the improved understanding of S. thermophilus physiology. An example is the model-based prediction of the most significant route of synthesis for the characteristic yogurt flavor compound acetaldehyde and identification of metabolic principles governing the synthesis of other flavor compounds. Moreover, the systematic assessment of amino acid supply and demand during growth in milk provides insights into the key challenges related to nitrogen metabolism that is imposed on S. thermophilus and any other organism associated with the milk niche.


Assuntos
Lactobacillus delbrueckii , Streptococcus thermophilus , Acetaldeído/metabolismo , Aminoácidos/metabolismo , Animais , Fermentação , Perfilação da Expressão Gênica , Ácido Láctico/metabolismo , Lactobacillus delbrueckii/genética , Leite/microbiologia , Nitrogênio/metabolismo , Ornitina , Streptococcus thermophilus/metabolismo , Iogurte/microbiologia
20.
Food Microbiol ; 107: 104080, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35953189

RESUMO

The lactic acid bacterium Streptococcus thermophilus is widely used in food production, notably in yogurt fermentation. It evolved under highly specific ecological conditions, resulting in its ability to efficiently metabolize lactose, the main saccharide in milk. However, when used in sweetened dairy products or plant-based products, S. thermophilus may encounter other saccharides (i.e. alone or in mixtures). To date, the bacterium's metabolic capacities in such contexts have been poorly characterized. Here, we explored saccharide utilization by 39 S. thermophilus strains. Using in silico analysis, we discovered that the identity and structure of saccharide utilization genes are conserved across strains, and we identified six saccharides that might be metabolized. Although underlying genetic variability was low, strains nonetheless displayed differences in growth when supplied with different saccharides: lactose, sucrose, fructose, and glucose. Interestingly, we found that strains preferentially used lactose and sucrose in tandem when given saccharide mixtures. Furthermore, we uncovered some main potential drivers of saccharide metabolism in S. thermophilus. Notably, the sucrose transporter ScrA is also responsible for importing glucose. Overall, this research has yielded useful findings that can help the development of new fermented foods, including plant-based products, in which sucrose may serve as a major carbon source.


Assuntos
Lactose , Streptococcus thermophilus , Animais , Carbono/metabolismo , Fermentação , Glucose/metabolismo , Lactose/metabolismo , Leite/microbiologia , Streptococcus thermophilus/genética , Streptococcus thermophilus/metabolismo , Sacarose/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...